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☯ These authors contributed equally to this work.

* amhernandezh@gmail.com

Abstract

The most unexpected and toughest phenomenon that has occurred in recent times is the

global COVID-19 pandemic. One of the first measures to prevent the spread of the disease

was to close educational institutions. The students were forced to start a learning process

through social networks and web platforms. In some countries, a return to face-to-face clas-

ses was established. However, weeks later, some of them had to return to virtual activities

due to an upswing in the COVID-19 cases. In Mexico, classes have been held virtually, with

face-to-face activities only re-established in two of the 32 states. In our state, Yucatan,

scholarly activities are still virtual. In this work, the dispersion of COVID-19 at different aca-

demic establishments in Yucatan was simulated. Networks of Friendship, noncordial treat-

ment, family ties and study groups were considered. Based on these networks, we

evaluated the possibility of returning to school without inducing a rebound in the COVID-19

cases in the state. Agent-based simulations were used, with each student as an agent. Inter-

action rules were established based on international research regarding good practices in

times of COVID-19. We used seven networks from different academic institutions, ranging

from primary through college level. As a result, possible contagion curves were obtained for

different scenarios, which leads to a discussion about the measures that would be relevant

once a return to face-to-face classes is overseen. Simulations show that isolating students

and reducing the number of students in the same classroom are good strategies and sub-

stantially reduce the possible contagiousness.

Introduction

Since COVID-19 was first discovered in December 2019 in the province of Wuhan in China,

humanity has had to quickly change the way people interact, in addition to suffering an

increased economic and social crisis [1–4]. At the beginning of 2020, COVID-19 cases began
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to appear in Europe, America, and Africa. Very quickly, scientists from many disciplines

began research to understand the virus and its spreading dynamics and tried to mitigate the

global pandemic, undertaking different approaches [5–12]. Once the gravity of the situation

was understood, governments from many countries decreed generalized lockdown to hold the

spreading of the disease and to minimize the number of deaths due to COVID-19. Several clin-

ical studies began to be conducted in China and in other countries of the world in which

COVID-19 first appeared [9, 13]. Some studies were focused on transmission due to social

interactions [4, 10, 11, 14], survival of the virus on surfaces [15], transmission on kids and

teenagers [16–18], transmission in closed places [12, 19–21], and computerized simulations

[22–24]. Complementary studies were focused on preventive measures and the evaluation of

the impact of wearing protective masks [25–27]. By the end of February, the first case of

COVID-19 arrived at the American continent, while cases began to rise in Europe and a con-

tingency was declared in several countries. By the third week of March, in several states of

Mexico, a lockdown of the population was imposed to hold back the virus’s spread and avoid a

saturation of the health system. One of the first actions imposed in Mexico (and in many coun-

tries of the world) was the cessation of face-to-face classes, along with developing more online

learning processes through social networks and virtual meeting platforms. In countries where

the number of people developing COVID-19 went down, a gradual opening of daily activities

began: people returned to work, recreation centers were opened, and even students returned

to classrooms [28–30]. In contrast, some countries kept face-to-face classes and have been able

to mitigate the spread of the virus in the population [31]. In the case of Yucatan State, face-to-

face classes were suspended on March 20, 2020. From that week on, a lockdown was estab-

lished throughout the state. Due to the proximity of a new school semester, it is of interest to

evaluate the relevance and challenges that a return to face-to-face classes would represent in

the state of Yucatan.

Materials and methods

School networks

Seven school networks were obtained through a survey in different academic establishments in

Yucatan, which were used through a web platform before the pandemic lockdown. This study

obtained ethics permission from the Bioethics Committee for Research on Humans COBISH

—CINVESTAV (Comité de Bioética para la investigación en seres Humanos, COBISH—CIN-

VESTAV). We obtained ethical permission from the committee in February 2019 with refer-

ence number 053/2018. Once the study was approved, we had talked with authorities from

different academic institutions. We asked directors for their written acceptance to survey the

students. At the moment of the survey, the students could decline or give their approval to

save their answers. If a student agreed, the student signed an informed consent electronically

at the end of the survey. The data acquisition started in March 2019 and ended in March 2020

because of the lockdown. We considered different types of relations such as friendship,

unfriendly treatment, family ties (such as siblings and cousins), and study group partners. It is

important to emphasize that all of the data collected through the survey followed the ethical

requirements. To obtain the data, 4784 students from seven different schools were involved in

the study. From the total number of students, 4323 students responded to the survey electroni-

cally through a web page saved on a server at Cinvestav Merida. At least 15 students were sur-

veyed. Each group of 4 students has a surveyor as supervisor to avoid interactions between

them. The response rate of the study was 86.45%. The survey used for obtaining the networks

is in the S1 File. The adjacency matrices of the networks used in this study are in the S2 File.
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Once obtained, data were cleaned considering the following different aspects: 1) friendship

and unfriendly treatment are mutually exclusive 2) siblings and cousins relationships are

mutually exclusive 3) cousins of my brothers/sisters are my cousins, 4) the brothers/sisters

have the same last names, 5) the cousins have at least one of their last names in common and

6) the links of brothers/sisters and cousins are by definition bidirectional. The data of the stu-

dents who did not fill out the survey or filled it out incompletely were removed. After all of the

data cleaning, this study considered the data related to 4136 students from the seven different

schools. Once we obtained the directed networks of friendship, unfriendly treatment, siblings,

cousins, and study groups, a single weighted network was generated. The weights of the differ-

ent links were assigned while accounting for two things: 1) the number of relationships that

students have between them (for example, being friends and also cousins), and 2) how close

they can be due to each relationship (for example, a friend is closer than a group study part-

ner). A weight of 0.5 was assigned to friends, while accounting for the fact that students tend

to spend as much time as possible with their friends. In the case of unfriendly treatment, a

weight of 0.1 was assigned given that the students would try to avoid a person with whom they

do not get along, but there will still be compulsory interactions. The brother/sister link is

assigned a weight of 0.5 because students and their brothers/sisters share space and time in

family activities. Links associated with cousins weighted 0.25, as they could share time outside

the school regularly but less extensively than with siblings. Finally, the links associated with the

study groups obtained a weight of 0.2 since the interaction is mainly due to an academic need

rather than a voluntary desire to share time with the partner. The assigned weight is normal-

ized to have a value between 0 (there is no relationship) and 1 (they have as many relationships

as possible). Table 1 shows the weight of each of the different link types present in the network

and their respective normalization. Once weighted networks were established, they were incor-

porated into agent-based simulations to simulate the spread of COVID-19 in each school

network.

Table 1. Weighted links. The links weight is associated with the number and type of links between nodes. The last col-

umn shows the normalization of the assigned link weight.

Relation type Assigned link weight Normalized link weight

Friends 0.5 0.42

Foes (Unfriendly treatment) 0.1 0.08

Brothers/Sisters 0.5 0.42

Cousins 0.25 0.21

Small group study partners 0.2 0.17

Friends and Brothers/Sisters 1 0.83

Friends and Cousins 0.75 0.63

Friends and Small group study partners 0.7 0.58

Foes and Brothers/Sisters 0.6 0.5

Foes and Cousins 0.35 0.29

Foes and Small group study partners 0.3 0.25

Brothers/Sisters and Small group study partners 0.7 0.58

Cousins and Small group study partners 0.45 0.38

Friends, Brothers/Sisters and Small group study partners 1.2 1

Friends, Cousins and Small group study partners 0.95 0.79

Foes, Brothers/Sisters and Small group study partners 0.8 0.66

Foes, Cousins and Small group study partners 0.55 0.46

https://doi.org/10.1371/journal.pone.0256363.t001
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Spread of COVID-19 in school networks

Variables considered in the simulations. Agents status. From scientific reports on

COVID-19 (which are numerous and impossible to review in their entirety) and from reports

of both the WHO and country authorities, we established the determinant factors when study-

ing the spread of COVID-19 in school facilities [5, 17, 32, 33]. The first variable established for

the model was the agents’ status, with the possibility of being symptomatic, presymptomatic,

or asymptomatic (Fig 1). These states were based on the bibliography that called attention to

those individuals who had little or no symptoms, who could remain to infect their peers for

several days before being detected and confined [7, 32, 34]. The number of patients who could

be asymptomatic or presymptomatic has not been globally established. Some publications

indicate various percentages, between 10 and 80%, and in some cases, the values discussed

come from computerized simulations [35]. Here, we evaluate the effects of having different

percentages of presymptomatic and asymptomatic agents. Then, the possible statuses for

agents are the following: Susceptible (S), Symptomatic (Is), Presymptomatic (Ip), Asymptom-

atic (Ia) and Recovered (R). In later simulations, agents can also take the status of Confined

(C).

Variables included in the interaction rules. To determine a form of the interaction rules, a

bibliographic review was conducted to identify the relevant variables. The variables considered

in this work are listed below:

1. State of health: Different studies show that the general state of health can be relevant,

because the severity of symptoms of COVID-19 reached by a patient can depend on comor-

bidities and previous conditions. These issues can make the individual more prone to

acquire the virus if there exists a low immune response, and individuals could carry symp-

toms that can worsen and even lead to death [36, 37].

2. Closed spaces: Several studies conducted in confined spaces showed that it is more likely to

acquire the virus if people interact with an infected person inside an enclosed space, espe-

cially if it does not have adequate ventilation [12, 19, 20].

3. Adoption of hygiene standards: Many studies have shown that adopting hygiene measures

such as hand washing, disinfection of high traffic areas, and the use of face masks reduces

the possibility of contagion [5].

Fig 1. Possible states of the agents throughout the simulation. Susceptible S, symptomatic Is, presymptomatic Ip, asymptomatic Ia, and recovered R. Since Stage 2,

we also have the Confined state C.

https://doi.org/10.1371/journal.pone.0256363.g001
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4. Physical distance: COVID-19 is present in saliva, according to various studies [38–40].

Then, when we speak, microdroplets of the saliva of different diameters are expelled. These

droplets can reach an interlocutor and infect him, which is why distancing measures have

been established in a large number of places.

5. Social proximity: In this case, it is assumed that the interactions that lead to a greater proba-

bility of contagion are those between people who have a relationship [4, 41]. Thus, social

proximity is the weight of the link in the network. This weight is associated with the num-

ber and type of relationships between two network agents.

6. Viral load: This variable is related to the moment that the symptoms can be observed. The

viral load is considered in the most advanced part of the simulations [6, 34].

Based on these variables, we established an interaction rule between agents that allows

determining how possible it is for an agent to infect its neighbors. A person who has more in-

links will be more likely to be infected. Similarly, if someone has a large number of out-links,

they can infect more people. The forms that the interaction rule takes are detailed in the sub-

section on interaction rules.

Simulation details. Using agent-based simulations, a series of stages were established to

evaluate a return to face-to-face classes in Yucatan, in light of the type of conditions that would

be required to make it possible.

Agent attributes. Along with the simulations, agents have different attributes, which were

selected based on an extensive amount of literature. These values were established to introduce

heterogeneity in agent properties and interactions. It is important to note that those values can

change if those are required for future simulations and new findings. Initially, agents have the

following attributes:

1. Age

2. Sex

3. Course

4. Status: the node is Susceptible (S), Symptomatic (Is), Presymptomatic (Ip), or Asymptom-

atic (Ia). Initially, everyone except for one agent is S. The infection status occurs in the Ip,

Ia and Is states. In later simulations, the agents can also take the status Confined (C).

5. General health condition: Based on data from the state of Yucatan [42], it is assumed that

86% of infants and young people have good health (value 0.0), 8% have little compromised

health (value 0.5), and 6% have a precarious state of health (value 1.0). Once the agent goes

from state S to an infected status (Ia, Ip, or Is), the value of the health condition attribute

changes, taking a value of zero for the Ia case, a value assigned randomly in a uniform dis-

tribution between 0.1 and 0.8 for Ip agents, and a value of 1.0 for Is cases.

6. Symptoms: For agents in the susceptible state, the symptoms attribute has a value of zero.

For agents that change their state to Ip, the symptoms attribute takes a random value in a

uniform distribution U (0.1,0.85). For those agents who reach the Is state, their symptoms

attribute will take a value greater than 0.85, and for those who go to the Ia state, it will take a

value of zero.

7. Having a sick relative: If an agent does not have a sick relative at home, the value of this

attribute is zero. If the agent has a sick relative who does not live in the same house, it takes

a value of 0.5, because there could be an occasional contagion. If there is a sick relative at
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home, then the value of this attribute is equal to one. Any of these three values are assigned

randomly in the simulation.

8. Adoption of hygiene standards: This attribute simulates how much the agent adopts

hygiene standards for the prevention of COVID-19 contagion (washing hands, avoiding

direct physical contact, use of face masks, and so on). It takes a value of 1 if the agent does

not adopt any hygiene rules, or -1 if all hygiene rules are adopted. This variable is set ran-

domly from a uniform distribution between -1 and 1.

9. Possibility of infection (associated with the viral load): This attribute is based on curves

obtained in different clinical studies used as a guide to establish the functional form of our

curves [6]. The viral load profile was incorporated in the latest stages of simulations and

was contemplated depending on the symptoms shown by the agent.

10. Days of transition to recovery: Once the agent goes from state S to any state of infection

(Ia, Ip, or Is), the agent acquires an attribute that indicates how many days it will be conva-

lescing until a recovery state is reached. For asymptomatic agents, this attribute takes a

value of 14 days; for presymptomatic agents, between 14 and 18 days; and for symptomatic

cases, it takes values between 18 and 22 days [6].

The simulations were run for 100 time steps (equivalent to 100 days), and 300 repetitions

were performed.

Interaction rules. In this section, we establish the interaction rules for the different simula-

tions. In the first interaction rule, variations in the viral load are not weighed. It is given by

pc ¼
1

5
� ðcþ esþ hþ df þ fenÞ � ps ð1Þ

where pc is the possibility of infecting a contact, c is the possibility of contagion in a closed

space, es is the possibility that the agent becomes infected given that its state of health is

accounted for, h is the possibility that the contact becomes infected depending on how well it

adopts hygiene standards, df is the physical distance between the contact and the infected

agent (its value is given by the linear relationship df = 1.02 − 0.68x), fen is the possibility of

becoming infected if the agent has a sick relative, and ps is the social proximity. An average of

the variables determinant in the infection process was performed to assure the accuracy of the

study.

Furthermore, we developed an interaction rule that accounts for the viral load profiles of

the infected node. In that case, the interaction rule is

pc ¼
1

6
� ðcþ esþ hþ df þ fenþ pcvÞ � ps ð2Þ

where pcv is the possibility that the infected agent infects its contacts depending on the evolu-

tion of the disease. The pcv value varies with time (each day of convalescence) and is approxi-

mated by the distribution,

PcðtÞ ¼
1

PcðdsÞ
dste� ds

t!
ð3Þ

where Pc(t) is the possibility of infecting on day t, Pc(ds) is the possibility of infecting on the

day ds on which the agent presents the symptoms or has the highest viral load [6]. The value of

ds depends on the status of the infected agent. For Is agents, it is between 1 to 3 days, 2 to 4 for

Ip, and 4 to 6 for Ia. Day t ranges from 0 to 14 days for asymptomatic agents, 0 to 18 for pre-

symptomatic agents, and 0 to 22 days for symptomatic agents.
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Possibles scenarios. In this study, different stages are proposed in the simulation to evaluate

the possible scenarios of the spread of the virus in school networks given different

considerations.

• Stage 1:

At this stage of the simulation, all infected agents can infect during all of the days of their

convalescence. This scenario would correspond to taking no action without considering that

the patient could die. At the end of the recuperation time, each agent will go to a recovery

state. The percentage of agents in states Is, Ip, and Ia is modified. It is established that 10 to

90% of the agents could be in another infected state other than Is. From this percentage, 15

to 90% could be in the Ia condition.

• Stage 2:

Is patients are confined, and each Is agent will have one day to infect its peers before it is con-

fined. Ia and Ip patients will not be detected and could continue to infect during the days in

which they remain in this state.

• Stage 3:

In this case, Ip patients could increase their state of symptoms until their symptoms attribute

is high enough (they reach a value of 0.9) to change their state to Is. This rule means that

agents in state Is and some agents initially in state Ip will be confined during the simulation.

At each time step, the symptoms attribute of the Ip agents will increase by 0.05. If an Ip agent

reaches the value of 0.9, it will become Is, and then, it will be isolated for the remaining time

of its convalesce. Ia agents will continue to infect every day until they are considered to be

recovered agents.

• Stage 4:

Stage 4 is functionally the same as stage 3. However, the agents that are established as siblings

of a symptomatic agent are confined at the same time as the infected agent. In the case of Ip

patients who reach the Is state, his/her siblings are also confined at the same time, whether

his state is S, Ip or Ia.

• Stage 5:

In this stage and the next stages, the viral load profile is incorporated, with the interaction

rule given by Eq 2. The confinement strategies implemented in the previous stages are still

considered.

• Stage 5A: In this stage, the nodes (agents) in the networks are selected to be in an immunized

state. There are four ways to choose an agent to be immunized: 1) randomly, 2) by its degree,

3) by its clustering, and 4) by its betweenness. The degree provides a size that reflects how

popular a node is in the network. The clustering measures how well connected are the neigh-

bors of an agent among themselves. The betweenness measures how important a node is for

the network interconnections.

• Stage 6A: The classrooms are separated into smaller groups of no more than 20 agents, with

all of the links being maintained.

• Stage 6B: The classrooms are isolated. In this case, the links between students from different

classrooms are removed except for cousins or siblings’ links, because they can probably

interact outside the school.

• Stage 7: In this scenario, stages 6A and 6B are combined. The classrooms are divided into

groups of no more than 20 agents, and the groups are isolated. Only the sibling and cousin
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links between agents from different groups are conserved. The conditions of all of the previ-

ous stages (isolation of symptomatic patients, isolation of siblings, contagion profiles, and so

on) are kept in this stage.

• Stage 8: Because some students can get infected in other circumstances outside of family or

student partner interactions, we give a daily probability that a randomly chosen agent gets

infected. At this stage, we simulate how these newly infected agents impact the spreading of

the virus, depending on the daily probability of their appearance. For this stage, we run the

simulation for 250 time steps.

A summary of the different stages for our simulations is shown in Fig 2.

Results

Seven school networks, Sch1, Sch2, Sch3, Sch4, Sch5, Shc6, and Sch7, were obtained through

surveys conducted through a web platform. The number of links and nodes and the

Fig 2. Different stages of the simulations.

https://doi.org/10.1371/journal.pone.0256363.g002
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characteristics of the weighted networks obtained are shown in Table 2. The networks

obtained in this study have properties similar to those found by Huerta-Quintanilla et al [43].

These networks were introduced into agent-based simulations to determine how COVID-19

would spread in each of them.

The value of R0 (stablish as the basic reproduction number which is associated with the

number os secondary cases) was calculated for each network imposing stage 1: all infected

nodes can infect others during the convalescence period. R0 was obtained by counting the sec-

ondary infections of each infected node. The secondary infections are then averaged over

infected nodes and repetions in the time steps in which the curve rises exponentially (the first

10 time steps, in our case). Table 3 shows the values of R0 obtained for each network. For

COVID-19 different researchers find multiple values of R0 between 1.3 and 3.5 [2, 24, 44, 45].

The characteristic curves (S, Is, Ip, Ia, and R) are shown in Fig 3A. Additionally, at stage 1,

it is visible that the behavior of the virus spread is similar in all of the school networks. There-

fore, the subsequent results will depend on the differences between the stages and between the

different percentages of the Ip and Ia agents present in the network, as in Fig 3B. Additionally,

the Sch2 network is shown in Fig 3C.

Fig 4A shows an increment of infected agents when the number of presymptomatic and

asymptomatic agents changes in the simulations. A comparison among stages 2, 3, and 4 is

shown in Fig 4B. It is evident that there is no significant decrease in the percentage of infected

agents (less than 5%) when Ip agents achieve high symptoms and become confined (stage 3).

Moreover, siblings’ confinement does not produce any relevant decrease in the total infected

cases.

Fig 4C shows a comparison among stages 5, 6A, 6B and 7. In this stages, the viral load is

considered in the simulation using Eqs 2 and 3 (Methods Section). From the results, it can be

observed that the division of the classrooms in small groups (stage 6A) produces a decrease in

Table 2. Characteristics of school-directed networks. Networks of friendship, noncordial treatment, siblings, cousins, and study groups were characterized. Additionally,

these networks were used to build the weighted network employed on the simulations. The type of school could be Elementary/Secondary/High School/University. Addi-

tionally, it can be located in an Urban area or a Rural area.

Characteristics Sch 1 Sch 2 Sch 3 Sch 4 Sch 5 Sch 6 Sch 7

Type of school E S S S H H Un

Location U R U U U R R

Nodes 562 270 456 613 1497 74 664

Friends Links 3350 1523 2840 2994 11618 367 3583

Foes Links 794 442 720 829 1301 94 544

Brothers/Sisters Links 150 26 50 62 170 12 44

Cousins Links 208 140 162 324 212 18 112

Small Study Group Links 467 541 758 1083 4089 169 1583

Directed mix weighted Links 4586 2220 3890 4526 14292 516 4628

Is it strongly connected? No Yes No No No Yes No

Is it weakely connected? Yes Yes Yes Yes Yes Yes Yes

<kout>, <kin> 8.16 8.23 8.53 7.38 9.54 6.97 6.97

Density 0.014 0.03 0.019 0.012 0.006 0.095 0.01

Networks diameter - 8 - - - 7 -

Average shortest path length 4.03 3.51 3.64 4.04 4.29 2.85 4.43

Average clustering 0.19 0.29 0.25 0.2 0.22 0.32 0.29

Average node betweenness 0.0054 0.0093 0.0058 0.005 0.0022 0.0257 0.0052

Average link betweenness 0.0008 0.0015 0.0009 0.0008 0.0003 0.0055 0.0009

https://doi.org/10.1371/journal.pone.0256363.t002
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the total number of infected agents (a decrease of 15.2% in the total number of infected agents

compared to Stage 5). Likewise, the isolation of classrooms contribute to the decrease of

infected agents (a decrease of 21.0% in the total number of infected agents compared to Stage

5). However, the best scenario occurs when classrooms are divided into smaller groups, and

additionally these small groups are isolated. At Stage 7 the number of total infected decreased

in 96.3% compared to Stage 5. The high diminishing of infected agents is originated in a modi-

fication of the network: around 50% of the links present in the classrooms and the links

between students of different classrooms are removed. This removal means that the networks

are modified and transformed into disconnected networks conformed by several clusters.

Table 3. R0 calculated for each school network. The value of R0 was based on the secondary cases. This operation

accounted for the infected agents, contacts infected, and agent out-degree. Additionally, the model included the inter-

val of time when the infected curve was growing to avoid a subestimation due to a low number of susceptible agents.

The registered value is an average over the infected nodes and the repetitions.

Educational Institution Ro

Sch1 2.9

Sch2 2.8

Sch3 2.8

Sch4 3.1

Sch5 2.4

Sch6 3.2

Sch7 3.3

https://doi.org/10.1371/journal.pone.0256363.t003

Fig 3. A. Stage 1 for Sch4. Blue S, red Is, purple Ip, magenta Ia, orange fraction of nodes infected with any type of

symptom, and green R agents. B. All school networks in stage 1: the accumulated percentages of agents at each state are

shown for every school. The results shown in A and B have 30% of agents without symptoms, from which 45% are

asymptomatic. C. Sch2 network obtained. The nodes are classified by classrooms.

https://doi.org/10.1371/journal.pone.0256363.g003
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The interaction rules developed in this work contemplate the probability of contagion from

an infected family member. Yet, a student may get sick in other places like restaurants, buses,

reunions, etc. To deal with the existence of infected people outside of the schools, a daily prob-

ability of infection of a random agent is generated in stage 8. Fig 5 shows the results for daily

probability of infection with values 0.1, 0.3, 0.5, and 0.7.

Fig 6 was obtained from the simulations of stage 5A (see Fig 2), where a percentage of

immunized agents is assumed. The results were obtained using 10, 30, and 60% of immunized

agents, either chosen randomly (Fig 6A), by its degree (Fig 6B), its clustering (Fig 6C), or its

betweenness (Fig 6D). The results show that the best results are obtained when the immunized

agents are chosen by either their degree or their betweenness. It is an expected result, since the

degree measures the popularity of a node in the network. Thus, the more connected agents

have a higher possibility of infecting others and being infected. On the other hand, between-

ness measures the importance of a node for the network interconnection. Thus, the nodes

with high betweenness are more susceptible to infection, since shorter paths pass through

these nodes. Based on the percentages, if we immunized 60% of agents, the disease is con-

tained. It is independent of how the agents are selected to be vaccinated.

Fig 4. A. Sch7 on Stage 2. In this case, the percentage of nodes (or agents) on states Ip and Ia increases, and agents in state Is are confined. Then,

the spread of the disease increases due to agents in states Ip and Ia that are not detected and confined. B. Comparing stages 2, 3 and 4 on Sch5

network: In this case, the figure shows the results obtained for Sch5 at each stage (1 to 4). In these cases, 30% of the infected students are not

symptomatic, and from these, 45% are asymptomatic. C. Comparing stages 5, 6A, 6B and 7 for Sch2, 30% of the agents were not symptomatic, and

from these, 45% were asymptomatic.

https://doi.org/10.1371/journal.pone.0256363.g004
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Discussion

Many studies have been conducted worldwide regarding COVID-19. Different countries have

shown different levels of contagion at different times. Countries such as Australia, Japan,

China and Germany, among others, have been able to continue or renew face-to-face classes

in several academic institutions ranging from preschool to university levels. In Mexico, educa-

tional institutions were closed on March 20, 2020. Since then, they have remained closed

except for a few cases. On January 11, 2021, schools in the states of Chiapas and Campeche

(with records of very low contagion) were able to renew face-to-face activities. In other states,

such as Veracruz, Tamaulipas, and Sinaloa, schools might open soon partially without the reg-

ular attendance of students. In this sense, the experience of going back to school in the context

of the COVID-19 pandemic is new in Mexico. In this work, we assumed that massive COVID-

19 tests would not be applied to students, parents, teachers, administrators, custodians, and

others. Thus, it would be possible to have asymptomatic and presymptomatic students in the

schools, which would not be detected until they infect others or show symptoms. Asymptom-

atic cases have been the subject of different studies [7, 34], and a consensus has not yet been

Fig 5. Introducing a new presymptomatic agent with a daily random probability.

https://doi.org/10.1371/journal.pone.0256363.g005
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reached on the percentage of asymptomatic patients who could exist within the sick popula-

tion. In some cases, they are estimated to be 80% [35] of the patients and in others approxi-

mately 12 to 36% [46]. In this study, we aimed to simulate the best and worst scenarios in

terms of control over the disease, based on the number of agents that do not present symptoms

or present mild symptoms. It is not assumed that minors have the possibility of being less

infectious, in accordance with studies that show that children have a contagion rate similar to

adults [47]; however, there are reports of a lower contagion rate in the case of children [28]. It

is important to note that in previous studies from schools, sampling was conducted once the

protocols to mitigate the virus proliferation were established. Therefore, the contagious rate

calculations could be affected by the effectiveness of the protocols and the reliability of the tests

used [28, 29]. In contrast, in this work, only the student networks were considered. Neverthe-

less, having a sick close relative was comprised in the probability of contagion. Links with

adults were not included, since it is assumed that returning to school coincides with a low level

of contagion among adults, who have continued their activities with limited mobility.

Through this study, we attempt to contribute to the establishment of strategies that grant a

low probability of producing a wave of contagion inside the schools, once returning to face-to-

face activities. In stage 1, a spread of the virus among students is simulated without any man-

datory sanitary measure; social distance and hygiene measures are randomly assumed to

reproduce a state in which these are optionally adopted. At this stage, all of the schools show

Fig 6. Percentage of nodes in an immunized stage (10, 30 and 60% on Sch1). The agents are selected based on

different criteria: A) randomly, B) by its degree, C) by its clustering, and D) by its betweenness.

https://doi.org/10.1371/journal.pone.0256363.g006
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similar behavior (Fig 3B). At stage 2, the symptomatic agents are confined. If most agents do

not present symptoms, it is difficult to control the disease spread by confining only the symp-

tomatic agents. Stage 3 includes confining agents who show symptoms that begin mild (pre-

symptomatic) and become severe, in addition to symptomatic agents. Fig 4A shows the

evolution of the number of infected agents when the number of presymptomatic and asymp-

tomatic agents change. Stage 4 includes enclosing the siblings of symptomatic agents. Fig 4B

shows a comparison of stages 2 to 4. The results show that there is no appreciable difference in

the total number of infected agents between the two stages. The measures simulated in these

stages are similar to those initially established in several countries when COVID-19 cases were

first found. In some countries, the contacts of infected patients were tracked, and massive

COVID-19 testing was implemented, allowing the detection of presymptomatic and asymp-

tomatic people. However, these initial measures were not sufficient. Based on Fig 4A and 4B, it

is possible to say that other types of strategies are necessary to contain the spread of the

disease.

It has been found, in different clinical studies, that the possibility of spreading the virus is

not the same throughout the convalescence time [6, 48]. In stage 5, an approximation of the

aforesaid trends in the viral load was incorporated such that on the days with a higher viral

load, there is a greater possibility of infecting others and it declines as the days go on. Specifi-

cally, asymptomatic and presymptomatic cases could infect each day of their convalescence

but not with the same probability, since it decreases while reaching the recovery state. Addi-

tionally, in this stage, symptomatic patients were confined the day they presented symptoms

and not the day after, as in previous stages. It was assumed that the agents present symptoms

the day after being infected; however, it could take between 1 and 3 days before they show

them. Adding this dynamic did not make a significant difference compared to the previous

stages.

To implement a strategy that addresses close interactions (which have been established as

the principal form of contagion), we modified the network by eliminating links in two ways: i)

dividing the classroom students into smaller groups (stage 6A) and ii) isolating the rooms,

which implies avoiding all interactions with students from different classrooms, except for rel-

atives (stage 6B). These stages engender a less dense network with a structure that is reduced to

groups of nodes that are poorly interconnected. Fig 3C shows a comparison of stages 5 to 7,

with stage 7 being the combination of stages 6A and 6B. From the results, it is evident that the

separated strategies (6A and 6B) do not impact strongly the contagion dynamics. However,

dividing the rooms and isolating them drives a significant decrease in the possible infections.

This combination of strategies encompasses three situations in which government institutions

around the world have requested to avoid back to school [30, 33, 49–51] 1) limited and closed

spaces, 2) crowds, and 3) face-to-face interactions [28]. Specifically, dividing the classrooms

into smaller groups and isolating the rooms allows avoiding crowds at the entrance of the

classrooms and considerably decreases the face-to-face interactions [29].

Students are not separated from society; they are immersed in it. Thus, a student could get

sick outside of the school aside from the family circle. To consider this fact, in stage 8, a daily

probability that a random agent gets the virus is generated. Fig 5 shows how the number of

infected agents increased with this daily probability. Stage 8 is a scenario of what could happen

if the cases in adults increase while students are in schools. Currently, multiple vaccines for

COVID-19 are available. However, vaccination of the world’s population is a complicated and

distant task. The process is time-consuming, and new virus variations are appearing. In this

respect, stage 5A preserves the conditions of previous stages and introduces a new state for the

agents: immunized. Fig 6 shows how the virus spreads in the network when the immunized
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agents are generated using different criteria. It can be observed that immunity is more effective

when the agents are chosen based on their degree or their betweenness.

Recommendations based on simulations, literature, and field work

Based on the field work conducted to obtain the networks, we present some points that are

worthwhile to consider and could not be included in the network. To avoid crowds, it is

important to keep physical distance and reduce face-to-face interactions at common areas.

Several of the institutions included in the study had two sessions, with 250 to 750 students per

session. Having such a number of students in an entrance at the same time can have repercus-

sions and increase the number of infections. Due to interactions outside of the schools, but

necessary to enter the school, we simulate with a daily probability the increment of cases at

schools (see Fig 5). In this sense, a staggered entrance of the students is recommended. The

staggered arrival of students helps to avoid a large number of students meeting at the school

access location. Additionally, it helps to avert a large number of interactions in public trans-

portation. This avoidance would allow students from different classrooms to remain isolated

from each other. Likewise, it is suggested that breaks be staggered and accompanied by saniti-

zation of the area where students will have lunch, each time that a new group has its break.

Similarly, a staggered exit is suggested to avoid crowds and interactions. In various studies, the

authors mention the importance of contagion due to adults who are part of the staff of educa-

tional facilities [28, 29]. It is suggested to limit the interaction with parents and lower the num-

ber of staff members per day in addition to staggering their entry and exit.

Limitations of the study

A first limitation comes from the fact that there are no data regarding infections in any of the

participating schools to compare and properly adjust the variables. Thus, the simulations can

give results that overestimate the number of cases that could occur. For this reason, many of

the variables were established randomly. However, the parameters can be changed according

to new findings. Another limitation comes from considering the student network to be a

closed system, without accounting for adult family links or interactions with teachers. This

study focuses on preventing the decision to go back to school from triggering the spread of the

virus in minors who were in contingency for almost a year. Here, the practicality of executing

the suggestions derived from the simulations is not accounted for, since simulations do not

consider the particular context of the academic institutions from which the student networks

were extracted. Therefore, the strategies obtained from this study must be discussed and con-

textualized in conjunction with the pertinent authorities at the social level, the school authori-

ties and the parents before being implemented.

Conclusion

Based on the simulations, it is possible to conclude that it is crucial to limit the interaction of

students within an educational establishment once they are back to school. It is possible to see

that getting groups smaller (stage 6A) or isolating different groups (stage 6B) is not the best

strategy itself. However, the combination of these strategies shows the best results (Stage 7),

because the number of infected agents decreased drastically (by 96.3% compared to Stage 5). It

was also visible that even when the networks were composed of different types of students, the

spread process was similar (Fig 3B). From previous work [52], it was possible to note that the

ages and the locations of the students can influence the internal structures in the networks. It

is significant to account for the social context of the different schools. For example, some

schools have two class schedules, morning and afternoon. For these schools, the management
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of the entrance and exit of the students would be more intricate than for schools with a unique

schedule. Because the simulations show that isolation and small groups are a good configura-

tion, it can be extended for interactions outside the school spaces (for example, at the school

entrance and on public transportation). In Fig 5, we simulate the infections due to the incre-

ments in cases outside the schools due to different factors using a daily probability. Then, it is

adequate to implement strategies inside the schools and in the student’s transportation from

home to school and vice versa. These simulations show similarities with strategies that have

been implemented in countries that reopen their schools in the context of the current pan-

demic. Nevertheless, this work adds to the importance of adequate and limited interaction

between students from different classrooms and the implications of changing the structure of

the student network to maintain school activities with the least possible risk.
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